Classification of antiseizure drugs in cultured neuronal networks using multi-electrode arrays and unsupervised learning



Antiseizure drugs (ASDs) modulate synaptic and ion channel function to prevent abnormal hypersynchronous or excitatory activity arising in neuronal networks, but the relationship between ASDs with respect to their impact on network activity is poorly defined. In this study, we first investigated whether different ASD classes exert differential impact upon network activity, and we then sought to classify ASDs according to their impact on network activity.


We used multielectrode arrays (MEAs) to record the network activity of cultured cortical neurons after applying ASDs from two classes: sodium channel blockers (SCBs) and γ-aminobutyric acid type A receptor-positive allosteric modulators (GABA PAMs). A two-dimensional representation of changes in network features was then derived, and the ability of this low-dimensional representation to classify ASDs with different molecular targets was assessed.


A two-dimensional representation of network features revealed a separation between the SCB and GABA PAM drug classes, and could classify several test compounds known to act through these molecular targets. Interestingly, several ASDs with novel targets, such as cannabidiol and retigabine, had closer similarity to the SCB class with respect to their impact upon network activity.


These results demonstrate that the molecular target of two common classes of ASDs is reflected through characteristic changes in network activity of cultured neurons. Furthermore, a low-dimensional representation of network features can be used to infer an ASDs molecular target. This approach may allow for drug screening to be performed based on features extracted from MEA recordings.


Alexander Bryson, Dulini Mendis, Emma Morrisroe, Christopher A. Reid, Saman Halgamuge, and Steven Petrou.

Published on 23 Apr 2022


Access: Standard

View publication

More research